Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7151

Title: Novel analysis and modelling methodologies applied to pultrusion and other processes
Authors: Wright, David T.
Keywords: Object oriented
Process modelling
Artificial neural networks
Issue Date: 1995
Publisher: © David Thomas Wright
Abstract: Often a manufacturing process may be a bottleneck or critical to a business. This thesis focuses on the analysis and modelling of such processest, to both better understand them, and to support the enhancement of quality or output capability of the process. The main thrusts of this thesis therefore are: To model inter-process physics, inter-relationships, and complex processes in a manner that enables re-exploitation, re-interpretation and reuse of this knowledge and generic elements e.g. using Object Oriented (00) & Qualitative Modelling (QM) techniques. This involves the development of superior process models to capture process complexity and reuse any generic elements; To demonstrate advanced modelling and simulation techniques (e.g. Artificial Neural Networks(ANN), Rule-Based-Systems (RBS), and statistical modelling) on a number of complex manufacturing case studies; To gain a better understanding of the physics and process inter-relationships exhibited in a number of complex manufacturing processes (e.g. pultrusion, bioprocess, and logistics) using analysis and modelling. To these ends, both a novel Object Oriented Qualitative (Problem) Analysis (OOQA) methodology, and a novel Artificial Neural Network Process Modelling (ANNPM) methodology were developed and applied to a number of complex manufacturing case studies- thermoset and thermoplastic pultrusion, bioprocess reactor, and a logistics supply chain. It has been shown that these methodologies and the models developed support capture of complex process inter-relationships, enable reuse of generic elements, support effective variable selection for ANN models, and perform well as a predictor of process properties. In particular the ANN pultrusion models, using laboratory data from IKV, Aachen and Pera, Melton Mowbray, predicted product properties very well.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7151
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File SizeFormat
Thesis-1995-Wright.pdf82.76 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.