Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/716

Title: Korteweg - de Vries equation: solitons and undular bores
Authors: El, G.A.
Issue Date: 2007
Citation: EL, G.A., 2007. Korteweg - de Vries equation: solitons and undular bores [Chapter 2]. IN: Grimshaw, R.J.H. (ed.). Solitary Waves in Fluids: Advances in Fluid Mechanics. Southampton: WIT Press, pp.19-53.
Series/Report no.: WIT Transactions on State of the Art in Science and Engineering; 9
Abstract: The Korteweg – de Vries (KdV) equation is a fundamental mathematical model for the description of weakly nonlinear long wave propagation in dispersive media. It is known to possess a number of families of exact analytic solutions. Two of them: solitons and nonlinear periodic travelling waves – are of particular interest from the viewpoint of fluid dynamics applications as they occur as typical asymptotic outcomes in a broad class of initial/boundary-value problems. Two different major approaches have been developed in the last four decades to deal with the problems involving solitons and nonlinear periodic waves: inverse scattering transform and the Whitham method of slow modulations. We review these methods and show relations between them. Emphasis is made on solving the KdV equation with large-scale initial data. In this case, the long-time evolution of an initial perturbation leads to formation of an expanding undular bore, a modulated travelling wave connecting two different non-oscillating flows. Another problem considered is the propagation of a soliton through a variable environment in the framework of the variable-coefficient KdV equation. If the background environment varies slowly, the solitary wave deforms adiabatically and an extended small-amplitude trailing shelf is generated. On a long-time scale, the trailing shelf evolves, via an intermediate stage of an undular bore, into a secondary soliton train.
Description: This version of the book chapter has been made available, courtesy of WIT Press, from the book IN: Grimshaw, R.J.H. (ed.). Solitary Waves in Fluids: Advances in Fluid Mechanics. Southampton: WIT Press, pp.19-53.
URI: https://dspace.lboro.ac.uk/2134/716
ISBN: 1845641574
Appears in Collections:Book Chapters (Maths)

Files associated with this item:

File Description SizeFormat
KdV_Chapter_final.pdfAccepted version305.11 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.