Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7257

Title: A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids
Authors: Haselbacher, Andreas C.
Keywords: Unstructured Grids
Navier-Stokes equations
Turbulence modelling
Finite-volume method
Upwind schemes
Multigrid method
Issue Date: 1999
Publisher: © Andreas C. Haselbacher
Abstract: The goal of the present work is the development of a numerical method for compressible viscous flows on mixed unstructured grids. The discretisation is based on a vertex-centred finite-volume method. The concept of grid transparency is developed as a framework for the discretisation on mixed unstructured grids. A grid-transparent method does not require information on the cell types. For this reason, the numerical method developed in the present work can be applied to triangular, quadrilateral, and mixed grids without modification. The inviscid fluxes are discretised using the approximate Riemann solver of Roe. A limited linear-reconstruction method leads to monotonic capturing of shock waves and second-order accuracy in smooth regions of the flow. The discretisation of the viscous fluxes on triangular and quadrilateral grids is first studied by reference to Laplace's equation. A variety of schemes are evaluated against several criteria. The chosen discretisation is then extended to the viscous fluxes in the Navier-Stokes equations. A careful study of the various terms allows a form to be developed which may be regarded as a thin-shear-layer approximation. In contrast to previous implementations, however, the present approximation does not require knowledge of normal and tangential coordinate directions near solid surfaces. The effects of turbulence are modelled through the eddy-viscosity hypothesis and the one-equation model of Spalart and Allmaras. The discrete equations are marched to the steady-state solution by an explicit Runge-Kutta method with local time-stepping. The turbulence-model equation is solved by a point-implicit method. To accelerate the convergence rate, an agglomeration multigrid method is employed. In contrast to previous implementations, the governing equations are entirely rediscretised on the coarse grid levels. The solution method is applied to various inviscid, laminar, and turbulent flows. The performance of the multigrid method is compared for triangular and quadrilateral grids. Care is taken to assess numerical errors through grid-refinement studies or comparisons with analytical solutions or experimental data. The main contributions of the present work are the careful development of a solution method for compressible viscous flows on mixed unstructured grids and the comparison of the impact of triangular, quadrilateral, and mixed grids on convergence rates and solution quality.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7257
Appears in Collections:PhD Theses (Aeronautical and Automotive Engineering)

Files associated with this item:

File SizeFormat
16020.pdf44.21 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.