Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7436

Title: An integrated architecture for operating procedure synthesis
Authors: Soutter, James
Keywords: Process plant design
Artificial intelligence
Operating procedure synthesis
Issue Date: 1996
Publisher: © James Kinnaird Soutter
Abstract: The task of creating the operating procedures for a processing plant is time consuming and requires the involvement of key members of the design team. As one of the consequences, the writing of operating procedures is often put off till the final stages of the design process. However, some operability problems will remain hidden in the design until the operating procedure is considered. These problems are expensive to fix because they require undoing some of the design decisions that have already been made. This thesis reports on research into the automatic creation of operating procedures, a field of research sometimes called Operating Procedure Synthesis (OPS). One motivation for OPS research is to develop a tool that can detect operability problems in the design of a plant and thus allow operability problems to be considered earlier in the design process reducing the cost of resolving these problems. Previous OPS systems are generally based around single techniques such as mixed integer linear programming. All the techniques that have been examined in the past are strong in some aspects of OPS and weak in some other aspects. There is no single technique that is strong in all areas of OPS. As a result, no previous OPS system is able to generate all the procedures used as examples in the OPS literature. This thesis presents a new approach to OPS. In this approach, OPS is viewed as a set of distinct but related subtasks. Three subtasks have been identified and examined in this work, namely planning, safety and valve sequencing. Algorithms have been developed to address each of these three subtasks individually. These algorithms have been integrated to form a single OPS system by using a common representation of the operating procedure to be created.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7436
Appears in Collections:PhD Theses (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Form-1996-Soutter.pdf15.86 kBAdobe PDFView/Open
Thesis-1996-Soutter.pdf13.75 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.