Loughborough University
Browse
shukla2.pdf (798.7 kB)

Mathematical modelling of the fibre laser surface processing of a zirconia engineering ceramic by means of three-dimensional finite-element analysis

Download (798.7 kB)
journal contribution
posted on 2011-01-05, 14:22 authored by Pratik P. Shukla, Jonathan Lawrence
The thermal effects of fibre laser surface treatment on a ZrO2 engineering ceramic were studied using a computational finite-element model (FEM). Temperature increases on the surfaceandthe bulk of theZrO2 during the fibre laser processingwere measured usinganinfra-red thermometer and specifically located thermocouples. The results showed an error of 5 per cent with the surface and 18 per cent within the bulk of the ZrO2 when comparing the experimental readings with those of the FEM. The FEM revealed a relationship between the traverse speed, power density, time, depth, and the temperature during various stages of the fibre laser surface treatment of the ZrO2. By utilizing data obtained from a thermogravimetry-differential scanning calorimetry (TG-DSC), the FEM predictions of the temperature distribution were used to map phase transformations and significant events occurring during the fibre laser surface treatment of the ZrO2. The mapping revealed that the fibre laser surface treatment generally resulted in a phase transformation of the ZrO2 at various temperatures changes as further shown in the article.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

SHUKLA, P.P. and LAWRENCE, J., 2011. Mathematical modelling of the fibre laser surface processing of a zirconia engineering ceramic by means of three-dimensional finite-element analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225 (4), pp. 949-964.

Publisher

Sage / © IMechE

Version

  • VoR (Version of Record)

Publication date

2011

ISSN

0954-4062;2041-2983

Language

  • en