Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7782

Title: High nickel- and titania-containing mesoporous silicas: synthesis and characterisation
Authors: Wang, Wei
Keywords: Nickel
Titania
Mesoporous
Microporous
Silica
Nanoclusters
Issue Date: 2005
Publisher: © Wei Wang
Abstract: In order to heighten the nickel content in mesoporous silica frameworks, a new direct synthesis method, called modified DS method, has been developed instead of the commonly used direct synthesis method. In addition, with the aim of incorporating a high amount of titania into SBA-15 mesoporous silica without blocking its mesopores, a multistep impregnation method, called the MSI method, has also been developed. By using the two developed methods, high nickel- and high titania-containing mesoporous silicas obtained werc synthesized. The nickel- and titania-containing mesoporous silicas were characterised by various techniques, i.e. XRD, TEM, EDX, SENI, N2-sorption, XPS, FTIR, UV-Vis-DRS, UV-VIS, TPR, and Raman spectroscopy. For nickel-containing mesoporous silicas synthesized by the modified DS method, satisfactory mesostructures were obtained and the nickel content was increased up to 14.7 wt.%. So far, no reports have been published on synthesis of mesoporous MCM-41-type silica with higher nickel content than 3.6 wt.% using DS method. Via our modified IDS method, high BET surface area (>840 rný/g) and pore volume (>-0.73 cm3/g were also achieved. Nickel was found to be incorporated into the silica frameworks. Formation of nickel phyllosilicates was also confirmed. After activation, mesostructurcs were still intact. Small nickel clusters embedded in the silica walls were found. A high amount of titania (up to 24.4 wt.%) was incorporated into the mesoporous SBA-15 silica via the multistep impregnation method. No damage to the SBA-15 silica mesostructures was caused. The existence of small titania nano-domins was confirmed to be present by Raman and UV-vis-DRS measurements. High dispersion of them was realized via this method according to the results of low-anglc XRD, TEM and N2-sorption measurements. Importantly, no blockage of mesopores was observed. Photo-activity tests showed the superiority of the materials synthesized by the MSI method to those by one-step impregnation method.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7782
Appears in Collections:PhD Theses (Materials)

Files associated with this item:

File SizeFormat
17156.pdf26.58 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.