Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7786

Title: Investigating the stability of geosynthetic landfill capping systems
Authors: Orebowale, Patience B.
Keywords: Geosynthetics
Capping system
Interface shear strength
Large direct shear device
Grid orientation
Slope stability
Pore water pressure
Issue Date: 2006
Publisher: © Patience Birungi Orebowale
Abstract: The use of geosynthetics in landfill construction introduces potential planes of weakness. As a result, there is a requirement to assess the stability along the soil/geosynthetic and geosynthetic/geosynthetic interfaces. Stability is governed by the shear strength along the weakest interface in the system. Repeatability interface shear strength testing of a geomembrane/geotextile interface at low normal stresses suitable for capping systems showed considerable variability of measured geosynthetic interface shear strengths, suggesting that minor factors can have a significant influence on the measured shear strength. This study demonstrates that more than one test per normal stress is necessary if a more accurate and reliable interface shear strength value is to be obtained. Carefully controlled inter-laboratory geosynthetic interface shear strength comparison tests undertaken on large direct shear devices that differ in the kinematic degrees of freedom of the top box, showed the fixed top box design to consistently over estimate the available interface shear strength compared to the vertically movable top box design. Results obtained from measurement of the normal stress on the interface during shear with use of load cells in the lower box of the fixed top box design, raise key questions on the accuracy, reliability and proper interpretation of the interface shear strength data used in landfill design calculations. Tests on the geocomposite/sand interface have shown the interface friction angle to vary with the orientation of the geocomposite's main core, in relation to the direction of shearing. Close attention needs to be paid to the onsite geocomposite placement in confined spaces and capping slope corners, as grid orientation on the slope becomes particularly important when sliding is initiated. Attempts to measure the pore water pressure during staged consolidation and shear along a clay/geomembrane interface in the large direct shear device suggest that this interface is a partial drainage path.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7786
Appears in Collections:PhD Theses (Civil and Building Engineering)

Files associated with this item:

File SizeFormat
Thesis-2006-Orebowale.pdf23.91 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.