Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/7936

Title: High speed electrodeposition using fluidised beds
Authors: McBurney, Michael J. P.
Issue Date: 1978
Publisher: © M.J.P. McBurney
Abstract: The relevant literature, relating to electrochemical cells, mass transfer, fluidised beds and mass transfer in fluidised beds, has been reviewed. Extensive experimental data for the cathodic reduction of copper fron acid CuSO4 electrolytes, in fluidised beds of copper powder, demonstrated the effectiveness of the cell at removing copper from the electrolytes. For a given bed weight the cell only acted efficiently below 25% bed expansion. Above this the operation of the cell changed to that of acting as a turbulent promoter for the feeder electrode. Two modes of cell operation were investigated. The electrolyte flow was either parallel or perpendicular to current flow. Of the two, electrolyte flow perpendicular to current flow was more effective overall, as it was more amenable to scale-up of the cell. When electrolyte flow and current flow were parallel particles in the bed had to be within a radius of one centimetre for the cell to act efficiently Potential. gradients within the bed caused many problems and prevented limiting currents from being observed because of secondary reactions increasing the total current from the bed. Preferential polarization. of the bed during potentiodynamic sweeps of the cathode caused reactions-to occur at low 'apparent' overvoltages. This was more noticeable in concentrated electrolytes or when larger beds were used.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/7936
Appears in Collections:PhD Theses (Materials)

Files associated with this item:

File SizeFormat
463857.pdf13.84 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.