Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/8069

Title: A genetic algorithm based topology optimisation approach for exploiting rapid manufacturing's design freedom
Authors: Watts, Darren M.
Keywords: Rapid manufacturing
Genetic algorithm
Topology optimisation
Functionally graded structure
Unit cell
Uniform stress distribution
Issue Date: 2008
Publisher: © D.M. Watts
Abstract: Current product structures are designed to meet predefined specifications and are thereforer arely optimal. Instead, they are frequently over-engineered to ensure fitness for purpose, which results in excess weight and uneven stress distributions throughout their structures. Designs are then often compromised further in terms of optimality by the inherent process limitations of conventional manufacturing. Rapid manufacturing (RM), due to its vastly increased design freedom, can overcome these restrictions and become the enabling technology for fabricating uncompromised, optimal products. This thesis describes the design, creation, testing and evaluation of a new design optimisation system capable of exploiting the high design freedom afforded by RM technologies. Inspired by the design rules that Nature follows, the system combines the stochastic search behaviour of Genetic Algorithm (GA) with finite element analysis in order to evolve optimal topological structures via a survival of the fittest process. The novelty of this approach is that 3D unit cell structures varying in volume fraction are used to simulate different densities of a single material, which are then efficiently distributed throughout the problem domain by the GA to yield an improved stress distribution. Furthermore, the system can consider different unit cells mixed together within the same problem, thereby substantially expanding the topology optimisation research field. Following a series of experiments of increasing complexity, the performance, stability and computational demands of the system are discussed. Experimental results indicate the system works, however, the presence of unit cells was found to cause localised stress concentrations to occur, which tend to inadvertently steer the overall optimisation process. Suggestions to address this issue were made. In addition, the mixing of different unit cells together was found to improve trade-offs between system objectives but did not always improve stress distribution.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/8069
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File SizeFormat
Thesis-2008-Watts.pdf191 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.