Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/808

Title: A review and comparative study of release coatings for optimised abhesion in resin transfer moulding applications
Authors: Critchlow, Gary W.
Litchfield, Robert E.
Sutherland, I.
Grandy, D.B.
Wilson, S.
Issue Date: 2006
Publisher: © Elsevier
Citation: CRITCHLOW, G.W. ... et al, 2006. A review and comparative study of release coatings for optimised abhesion in resin transfer moulding applications. International Journal of Adhesion and Adhesives, 26 (8), p.577-599.
Abstract: In this study, a number of abhesion promoting coatings were considered in terms of their physicochemical and release properties. The techniques used to further this study include; FEGSEM, AFM, profilometry, AFM, XPS, AES, SSIMS, FTIR and contact angle analysis for coating physical and chemical characterisation along with PF-AFM and other adhesion and mechanical tests to determine surface release properties. These coatings were applied to metal substrates and were based upon silicone, fluoropolymer or metal-PTFE composite chemistry, all being potentially useful as release films for resin transfer moulding (RTM) applications. The semi-permanent Frekote B15/710 NC mould release coating system, which is based on PDMS, proved extremely effective in terms of release against a cured epoxide applied under pressure. Although fluoroalkylsilane coatings offer a number of technological advantages for release applications they generally produce very thin coatings which conform any existing surface topography and adhesion through mechanical interlocking occurs. The commercial PTFE-based coatings were found to provide poor release properties due to the presence of surface microcracks which allowed epoxide penetration when cured under elevated pressure and temperature. Electroless Ni/PTFE composite coatings comprise hard nickel-phosphorus matrix containing a very fine dispersion of PTFE particles. The matrix proved sufficiently robust for industrial applications and the low friction and surface energy provided by the embedded PTFE combined with macroscopic scale surface roughness provided efficient mould release.
Description: This article has been published in the journal, International Journal of Adhesion and Adhesives [© Elsevier]. The definitive version: CRITCHLOW, G.W., LITCHFIELD, R.E., SUTHERLAND, I., GRANDY, D.B. and WILSON, S., 2005. A review and comparative study of release coatings for optimised abhesion in resin transfer moulding applications. International Journal of Adhesion and Adhesives is available at: www.elsevier.com/locate/ijadhadh
DOI: 10.1016/j.ijadhadh.2005.09.003
URI: https://dspace.lboro.ac.uk/2134/808
ISSN: 0143-7496
Appears in Collections:Published Articles (Materials)

Files associated with this item:

File Description SizeFormat
critchlow_review.pdf1.77 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.