Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/8228

Title: Hierarchical TCP network traffic classification with adaptive optimisation
Authors: Wang, Xiaoming
Keywords: Traffic classification
Traffic identification
Application detection
Traffic characteristic
Traffic feature
Machine learning
Data mining
Artificial intelligence
Issue Date: 2010
Publisher: © Xiaoming Wang
Abstract: Nowadays, with the increasing deployment of modern packet-switching networks, traffic classification is playing an important role in network administration. To identify what kinds of traffic transmitting across networks can improve network management in various ways, such as traffic shaping, differential services, enhanced security, etc. By applying different policies to different kinds of traffic, Quality of Service (QoS) can be achieved and the granularity can be as fine as flow-level. Since illegal traffic can be identified and filtered, network security can be enhanced by employing advanced traffic classification. There are various traditional techniques for traffic classification. However, some of them cannot handle traffic generated by applications using non-registered ports or forged ports, some of them cannot deal with encrypted traffic and some techniques require too much computational resources. The newly proposed technique by other researchers, which uses statistical methods, gives an alternative approach. It requires less resources, does not rely on ports and can deal with encrypted traffic. Nevertheless, the performance of the classification using statistical methods can be further improved. In this thesis, we are aiming for optimising network traffic classification based on the statistical approach. Because of the popularity of the TCP protocol, and the difficulties for classification introduced by TCP traffic controls, our work is focusing on classifying network traffic based on TCP protocol. An architecture has been proposed for improving the classification performance, in terms of accuracy and response time. Experiments have been taken and results have been evaluated for proving the improved performance of the proposed optimised classifier. In our work, network packets are reassembled into TCP flows. Then, the statistical characteristics of flows are extracted. Finally the classes of input flows can be determined by comparing them with the profiled samples. Instead of using only one algorithm for classifying all traffic flows, our proposed system employs a series of binary classifiers, which use optimised algorithms to detect different traffic classes separately. There is a decision making mechanism for dealing with controversial results from the binary classifiers. Machining learning algorithms including k-nearest neighbour, decision trees and artificial neural networks have been taken into consideration together with a kind of non-parametric statistical algorithm — Kolmogorov-Smirnov test. Besides algorithms, some parameters are also optimised locally, such as detection windows, acceptance thresholds. This hierarchical architecture gives traffic classifier more flexibility, higher accuracy and less response time.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/8228
Appears in Collections:PhD Theses (Electronic, Electrical and Systems Engineering)

Files associated with this item:

File SizeFormat
thesis.pdf2.03 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.