Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/8956

Title: Fabrication of nanostructured α-Fe2O3 films for solar-driven hydrogen generation using hybrid heating
Authors: Vaidhyanathan, Bala
Saremi-Yarahmadi, Sina
Wijayantha, K.G.U.
Issue Date: 2011
Publisher: Wiley © American Ceramic Society
Citation: VAIDHYANATHA, B., SAREMI-YARAHMADI, S. and WIJAYANTHA, K.G.U., 2011. Fabrication of nanostructured α-Fe2O3 films for solar-driven hydrogen generation using hybrid heating. IN: Widjaja, S. and Singh, D. (volume eds). Nanostructured Materials and Nanotechnology V. Wiley, pp. 11-22
Series/Report no.: Ceramic Engineering and Science Proceedings;Vol. 32 Pt. 7
Abstract: Electrodeposited thin films of Fe were oxidised using a novel conventional/microwave hybrid heating method. The photo-performance of hematite electrodes was investigated and the results are compared with regards to the amount of microwave power applied. The findings showed significant improvement in the performance of hematite electrodes when microwave heating was used. The genuine ‘microwave effect’ observed in this case is confirmed by using hybrid heating experiments at identical time-temperature profiles. The photocurrent density obtained at 0.23 V vs. VAg/AgCl increased significantly from 7 to 126 μA.cm-2 when microwave power was raised from 0 to 300 W. The films prepared by pure conventional annealing showed high recombination and photocurrent onset of around 0.4 V vs VAg/AgCl while the onset showed a negative shift to 0.1 V vs VAg/AgCl for the hybrid samples. The results obtained from Raman spectroscopy indicated a highly defective crystalline nature for the conventionally-annealed samples while microwave-assisted annealing resulted in fewer defects in the oxygen sublattice of hematite structure. It suggests that microwave heating improves surface properties of hematite films thus enhancing the photoelectrochemical performance of the photoelectrodes. Hybrid heating was found to provide a unique opportunity to control/tailor the oxidation kinetics and in turn the photo-performance of hematite electrodes using microwave power.
Description: This article is closed access.
Version: Accepted for publication
URI: https://dspace.lboro.ac.uk/2134/8956
ISBN: 9781118059920
Appears in Collections:Closed Access (Materials)

Files associated with this item:

File Description SizeFormat
CESP hybrid paper.pdf795.29 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.