Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/9032

Title: Synthesis and reactivity of cyclopropanes and cyclopropenes
Authors: Watson, Hayley
Keywords: Cycloaddition
Nucleophilic addition
Issue Date: 2011
Publisher: © Hayley Watson
Abstract: Activated cyclopropanes have been extensively used in synthetic chemistry as precursors for cycloaddition reactions. The rationale behind this is their ability to undergo ring-opening when activated by a Lewis acid, this can be enhanced further by the presence of a carbocation stabilising group like electron-rich aromatics. The stabilised dipole formed after ring opening can be trapped with suitable electrophiles such as imines and aldehydes via a [3+2] cycloaddition reaction. This results in the synthesis of pyrrolidines and tetrahydrofurans in excellent yields but moderate diastereoselectivity. Similarly, 6-membered heterocycles can be formed via a [3+3] cycloaddition reaction of activated cyclopropanes with nitrones. Now to extend the scope of the methodology, a [3+3] dipolar cycloaddition has been developed using activated 2,3 disubstituted cyclopropane diesters to access a range of highly functionalised oxazines in moderate to good yields (50-75%) and with reasonable diastereoselectivity. The use of activated symmetrical disubstituted cyclopropanes afforded the desired oxazines in a regio- and diastereocontrolled manner, while the use of unsymmetrical cyclopropanes significantly reduced the diastereoselectivity of the reaction. The stereochemistry outcome of the reaction developed was determined by nOe analyses and X-ray diffraction structures could be recorded in some examples. A new methodology has also been developed to gain access to novel N-heterocyclic- and phenol- substituted cyclopropanes in one step from the corresponding cyclopropene via a conjugated addition.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/9032
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File SizeFormat
final version of thesis (Autosaved).pdf1.98 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.