Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/9499

Title: Large-eddy simulation of twin impinging jets in cross-flow
Authors: Li, Q,
Page, Gary J.
McGuirk, James J.
Keywords: Science and technology
Aerospace engineering
Issue Date: 2007
Publisher: © Royal Aeronautical Society
Citation: LI, Q., PAGE, G.J. and MCGUIRK, J.J., 2007. Large-eddy simulation of twin impinging jets in cross-flow. The Aeronautical Journal, 111 (1117), pp. 195 - 206.
Abstract: The flow-field beneath a jet-borne vertical landing aircraft is highly complex and unsteady. large-eddy simulation is a suitable tool to predict both the mean flow and unsteady fluctuations. This work aims to evaluate the suitability of LES by applying it to two multiple jet impingement problems: the first is a simple twin impinging jet in cross-flow, while the second includes a circular intake. The numerical method uses a compressible solver on a mixed element unstructured mesh. The smoothing terms in the spatial flux are kept small by the use of a monitor function sensitive to vorticity and divergence. The WALE subgrid scale model is utilised. The simpler jet impingement case shows good agreement with experiment for mean velocity and normal stresses. Analysis of time histories in the jet shear layer and near impingement gives a dominant frequency at a Strouhal number of 0.1, somewhat lower than normally observed in free jets. The jet impingement case with an intake also gives good agreement with experimental velocity measurements, although the expansion of the grid ahead of the jets does reduce the accuracy in this region. Turbulent eddies are observed entering the intake with significant swirl. This is in qualitative agreement with experimental visualisation. The results show that LES could be a suitable tool when applied to multiple jet impingement with realistic aircraft geometry.
Description: This article was published in The Aeronautical Journal [© Royal Aeronautical Society].
Version: Published
URI: https://dspace.lboro.ac.uk/2134/9499
Publisher Link: http://aerosociety.com/Assets/Docs/Protected/Subscribers/AeroJournal/3097.pdf
ISSN: 0001-9240
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
2007-large-eddy-simulation.pdf4.5 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.